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EXACT SOLUTION OF A PARTICULAR PROBLEM OF OSCILLATIONS 
OF A SYSTEM .WITH RANDOM PARAMETRIC EXCITATION* 
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UDC 531.36:534 

A second order system with external and parametric perturbations of the white noise 
type is considered. An exact analytic solution of the steady Fokker-Plank 
-Kolmogorov equation is obtained for this system at some special relation between 
the Coefficients Of modulation intensity with respect to the coordinate and veloc- 
ity. The solution determines the power relationship for the combined probability 
density of the coordinate and velocity. 

The obtained solution can be used for checking various approximate methods of investiga- 
tion of problems of dynamics of systems with random varying parameters. Note that the 
majority of these methods are local based on the assumption of closeness (in one sense or 
another) of the motion of a given system to that of a system with constant parameters (see, 
e.g., /l/ and the cited there bibliography). For some systems it is possible to effect a 
nonlocal analysis using the method of Markovian processes in conjunction with the method of 
averaging. Such analysis was carried out in /2/ for a second order system based on the solu- 
tion of the Fokker- Plank-Kolmogorov equation for the steady one-dimensional probability 
density of the amplitude. 

Let us consider the second order system 

I" c 2=' fi i I) (L)] -I- 0% [I + e (01 = c (0 (1) 

where : (t), n (L), ; (t) are statistically independent steady Gaussian centralized random proces- 
ses of the white noise type in the sense of Stratonovich /3,4/ with the respective intensity 
coefficients DE. D,,D;. We rewrite (1) in the form of the equivalent system of two Ito's 
stochastic equations 

clt = IJ dt, dy = I-(2a - 2cGD,) y - ST] dt - Q%D;l’dZ - 2ayDi:d3 +Dp dZ 

where 2.1i.z are independent Wiener's processes, and compose the steady Fokker-Plank 
-Kolmogorov equation for the combined probability density p(.r, y) of processes r(t) and I (0 

y $ = 2% g + -& [(2a - 2atD,,) yp] + i & [(‘la%PD, + Q+aD, + % p] (2) 

A direct substitution will show that when coefficients DE.D, are linked by the relation 

SFDE = 4a’D, (3) 

then Eq.(2) has the following solution: 

p (r, y) = c (x + 23 + yw)-* (4) 

x = D;/(D@, 6 = 2al(DtQ*) + ‘I, (5) 

which is valid over the whole Z.IJ -plane and is damped at infinity. 
Function p(~,!/) defined by formula (4) actually represents the combined probability den- 

sity of the coordinate and velocity, when the normalization condition 6> I is satisfied. The 
normalization constant C is then 

C=[f 5 P (r. Y) dl dy 1 -I = (nQ)-’ (a - 1) d-1 (6) 
-I-% 

The indicated condition 8>1 of existence of steady probability density p(z+yj must 
coincide with the stability condition for system (l! with respect to probability. This fair- 

ly evident statement can be strictly proved, at least in the case of small z.L$,D,,, bypassing 
with the use of the asymptotic method of averagingtothe first order equation for the mPli- 
tude of process z (t) , and applying the method of stability analysis described in /4/. 

Moreover, when X = I) , the probability density (4) has (in the case of 6> 11 a noninteg- 
rable singularity at point 1=0,y=O, i.e. p(r,y) degenerates into a delta function ls(O. 0). 

- 
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Physically this corresponds to total absence of oscillations of the stochasticallystable (when 
6>1) system (1) in the absence of external excitation. Note, also, thatatthe limit as DE-.0 
we obtain, as expected, from (4) and (5) the expression for the normal probability density 
P (2. Y). 

By passing in (4) to new variables A end o using formulas J = A coas, g := 6EA sin gi it is 
possible to determine in conformity with the rules of determination of probability density of 
functions of random quantities /S/, the combined probability density p(A.vi. Integrating the 
latter with respect to cp from zero to 2rr we obtain the one-dimensional steady probability 
density of the amplitude 

P(A)= 
2.4 (a - 1) 
x II + Azj%)6 

(7) 

The same amplitude distribution (7) is obtained generally for small a. I+. D,. DE (when 
equality (3) is not satisfied) using the asymptotic method of averaging; in /2/ distribution 
(7) was obtained for D,=O. Generally the dependence of parameters x,6 of that distribution 
on parameters a.R, DE3 D,,D; is, obviously, different from that determined by (5). When equal- 
ity (3) is satisfied, the approximate distribution p(A) determined by the method of averaging 
coincides with the exact one. 

Integration of (4) with respect to y yields the one-dimensional steady probability dis- 
tribution of coordinate 2 (Q 

where I' is the gamma function. Let us determine the moments of power distribution (8). All 
moments of odd order turn out to be zero, while for moments of order 2k we obtain 

where the angle brackets denote everywhere averaging. It will be seen that moments of order 
?k of the process z(1) are finite only when 6> k-i- 1. The inequality C>k+ 1 is the con- 

dition of stochastic stability of system (1) with respect to moments of order 2k . When 
i ~6~2 process t(r) is unstable in the quadratic mean, althoughsteadyprobability density of 
this process does exist. Note that such steady probability densities were observed in numer- 
ical simulation of system (1) with D%=O on a computer /2/. In the light of the above it is 
not surprising that in the case of 1<6<2 it was not possible to obtain consistent estimat- 
es of dispersion for process x(t) ;the estimates considerably varied from one segment of the 
process realization z(t) to another. 

On the basis of formula (4) it is also possible to determine the mixed moments of the 
coordinate and velocity. Distribution (4) is an interesting example of a situation in which 
a steady random process and its first derivative are not statistically independent. Indeed, 
although '~9) = o (processes z(t) and g(t) are not correlated), the fourth order mixed moment 

coincides with the product (z% Q% = (~z~~)P*=%~~~(G-Z)-~ only at the limit as 6--m which 
corresponds to the asymptotically normal- distribution. 

In concluding, let us determine, using the formula in /5/ the average number of intersec- 
tions n(s") of process r(t) with the level I= t0 with positive derivative. We have 

n- 

n (%) = s YPh Y)& = Q-m) (1 -I- #/rr@-~-1) (10) 
D 

At the limit as DE,,-0 we obtain, as expected 

Formula (10) clearly shows that with the approach to the boundary 6=i of stochastic 
stability of system (1) a continuous increase of the level of parametric oscillation intensif- 
ication of oscillations induced by external random perturbations 6 (0 , takes place. 
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